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Abstract
We present an analysis for a particular singularly perturbed conservative system.
This system comes from the normal form of two coupled oscillator systems
with widely-separated frequencies and energy-preserving nonlinearity. The
analysis is done in this paper for a degenerate case of such a system, while
the generic one has been treated in the literature. To understand the relation
with the strong resonance case, we have computed the normal form of the
2:1 resonance, and found that the latter is contained in our system. We
present a theorem that gives the existence of a nontrivial equilibrium for a
general singularly perturbed conservative system. We detect that the nontrivial
equilibrium undergoes two Hopf bifurcations. Furthermore, the periodic
solutions created through these Hopf bifurcations undergo a sequence of period
doubling bifurcations. This leads to the presence of chaotic dynamics through
Shil’nikov bifurcation of a homoclinic orbit. Also, we measure the size of the
chaotic attractor which is created in our system.

PACS numbers: 02.60.Lj, 05.45.−a, 02.30.Oz
Mathematics Subject Classification: 34C15, 37D45, 37G05, 37G15

1. Introduction

It is well known that resonances are responsible for the nontrivial dynamics in a system of
two coupled oscillators (see [1, 9, 16, 19, 20]). One of those dynamics is the energy transfer
between oscillators. In strong resonance cases (such as 2 : 1 resonance), this happens more
dramatically in comparison with the higher order ones. See, for example, in [6, 19] for strong
resonances; for higher order resonances, see [9, 16, 17, 20].
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Starting from the year 1990, people are looking at an extreme type of higher order
resonance (think of 1 : ε resonance, where ε � 1). See, for example, in [2, 3, 12–15, 22–24].
One of conclusions from those studies that this type of resonance, which is also called a widely
separated frequency case, the dynamics of the system is rather different from an ordinary higher
order resonance.

Our study in this paper is motivated by the results in [23, 24]. In those papers, a system
of coupled oscillators with widely separated frequencies is studied. Apart from having the
assumption on the frequencies, the author there also assumes that the nonlinearity of the
system preserves energy which is represented by the distance to the origin. Under these two
assumptions, the system produces interesting dynamics.

In application, the system in [23, 24] is a generalization of a mathematical model in
atmospheric research which is called ULFV (ultra-low frequency variability) model. The
model represents a long-time behavior of the interaction patterns in atmosphere. The normal
form in [23, 24] can be seen as a singularly perturbed conservative system. This is due to the
assumption on the nonlinearity being energy preserving. As a consequence, the dynamics is
decomposed into two time scales, namely slow–fast dynamics.

One of the interesting dynamics that occur is the existence of a sequence of period-
doubling bifurcations. The bifurcations usually lead chaotic dynamics of a system, but in [23]
it does not seem to be the case. Another interesting dynamics is the so-called Neimark–Sacker
bifurcation which produces torus solutions. The break-up of this torus solution usually implies
interesting (most of the time chaotic) dynamics, see [24].

The study in [23, 24] is concentrated on the generic cases (namely all of the parameters in
the system admit general values). In this paper we will deal with one of the degeneracies that
arise in the system. This degeneracy can be induced by the presence of a particular discrete
symmetry which is also abundant in nature. Preliminary results in this case, which are for
the energy-preserving system have been shown in [23]. One of the complications that arise
immediately in the degenerate case is that we will have to deal with a slow manifold which is
entirely not normally hyperbolic.

Another motivation for studying this degenerate system is the following. The system
contains the normal form for a totally different resonance, i.e. the 2:1 resonance . The latter is
the strongest resonance in a system of two coupled oscillators. Even in the Hamiltonian case,
this resonance produces a large energy exchange between the oscillators. At the end, it leads
to irregular and chaotic behaviors of the system. This result is a confirmation of the previous
results of the widely-separated frequency case, see [2, 3, 12–15].

1.1. Summary of the result

Our system and the normal form in [23, 24] are examples of the singularly perturbed
conservative system. Thus, our dynamical system is conservative when the perturbation
parameter is set to zero. The conserved quantity in our system takes the form of an invariant
sphere in R

3. The perturbed flow creates the dynamics transversal to these spheres.
It is evident that our system admits two equilibria, i.e. the trivial and the nontrivial ones.

The stability analysis for the trivial equilibrium can be deduced from linear analysis. The
nontrivial one however is more cumbersome to use linear analysis. We have applied the
asymptotic method to deduce that stability of the nontrivial equilibrium. This nontrivial
equilibrium undergoes Hopf bifurcation. Furthermore, the periodic solution created by
this Hopf bifurcation undergoes a sequence of periodic doubling bifurcations. Moreover,
a homoclinic orbit is created and it fits Shil’nikov condition for chaos.
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The analysis of the fully perturbed system which is mentioned above, is done using
the numerical continuation toolbox MATCONT, see [5]. The existence of the nontrivial
equilibrium then becomes crucial. Although in our system it is evident that such an equilibrium
exists, in this paper we provide a theorem that gives the existence for such an equilibrium for
a more general setting (see theorem 3.1). The proof is based on the implicit function theorem
and the Taylor formula without the remainder.

It is interesting to note that the system which is analyzed here also contains the normal
form of the system in [23, 24] at 2:1 resonance. This is a completely different resonance—
namely one of the strong resonances (see appendix B). This suggests that an extreme type of
higher order resonances should be seen as first-order resonances.

We have found difficulty in providing a complete numerical bifurcation analysis for the
case δ < 0. The 2:1 resonance case explained in appendix B is in this region. In our system,
a complete analysis can be done only in the parameter regions in δ > 0. Some preliminary
results for the case δ < 0 are presented in the last section, but further study is necessary for
this case.

2. Formulation of the system

Let us now consider a system of ordinary differential equations in R
3:

ṙ = δxr + εκ1r

ẋ = �y − δr2 − εκ2x (2.1)

ẏ = −�x − εκ2y

with � = αx + βy + ω. Following [23, 24], we assume κ1, κ2 > 0, ω > 0, β < 0 while δ �= 0.
This is not too much of a restriction to the system since using the symmetries in the system
we can reconstruct the dynamics for the other part of the parameter space (see [23, 24] for
details). In contrast to [23, 24], in this paper we choose α = 0.

Note that the system (2.1) is a normal form of a system of coupled oscillators:
ξ̇ = Aξ + F (ξ) where F is a homogeneous quadratic polynomial. The linear part of this
system consists of oscillations with frequencies having the ratio of 1 : ε. In appendix B we
show that the normal of the system in the 2:1 resonance case is contained in system (2.1).

2.1. Notes for the energy-preserving part of system (2.1)

For ε = 0 the system (2.1) is called the energy-preserving system. All solutions of the system
except for the trivial equilibrium lie on an invariant sphere. Dynamics of the system on the
projecting plane of the sphere has been shown in [23]. In that paper, the author shows the
change of the dynamics when the radius of the sphere is changed.

We will give some notes about the dynamics of the unperturbed system related to the results
in [23]. The notes are not stated explicitly in [23] but they are necessary for understanding the
connection between the dynamics of the unperturbed system which preserves the energy and
the dynamics of the perturbed system which will be done in this paper.

For ε = 0 the system (2.1) has two manifolds of equilibria: one lies in the plane r = 0
and the other in the plane x = 0. In the plane r = 0, the parametrization of the manifold is

(r, x, y) =
(

0, xo,−ω

β

)
, xo ∈ R. (2.2)
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The other manifold of equilibria is

(r, x, y) =
(√

(βyo + ω)yo

δ
, 0, yo

)
. (2.3)

We refer to [23] or [24] for the stability analysis of those equilibria. Solutions of the system in
this case lie on an invariant sphere, so we can reduce the dimension of the system by projecting
the upper half-sphere into the horizontal plane. By varying the radius of the sphere R, there
are three bifurcation points, R1 = −ω/β and

R2 = − ω

2(β + δ)

√
−β + δ

δ
.

All possible topologically different phase portraits of the reduced system (2.1) can be seen in
[23].

From figure 4 in [23], the author found a simultaneous saddle-node and homoclinic
bifurcations. They occur at the bifurcation point R1 for δ > −β/2. The other homoclinic
bifurcations at R1 also occur for 0 < δ < −β/2 and δ < 0. At the bifurcation point R2, a
saddle node bifurcation occurs in the system.

3. On singularly perturbed conservative systems

3.1. Some notations

In the following section we will show the existence of the equilibrium of the singularly
perturbed conservative system in a more general setting. Let us introduce some notations to
facilitate our analysis. For a vector-valued function F , Fk represents the kth component of F ,
while F k represents the vector-valued functions consisting of the first k components of F . By
DξF we mean differentiation with respect to the spatial coordinate ξ. The ∇H is the gradient
vector of the real-valued function H. We will also use a notation for partial differentiation with
respect to ε, which is ∂

∂ε
.

Let us now consider a slightly more general situation. Consider R
n with coordinate ξ =

(ξ1, . . . , ξn). Consider a one-parameter family of Ck-vector fields F : R
n × (−ε◦, ε◦) → R

n,
for some real numbers 0 < ε◦ � 1 and k ∈ N. Using t ∈ R as the time variable, the
corresponding system of ordinary differential equations is

ξ̇ = F (ξ, ε), (3.1)

where the dot denotes the derivation with respect to t.
Furthermore, we assume:

(i) there exists a Ck-function H : R
n → R such that (∇H(ξ))T · F (ξ, 0) = 0 for all ξ ∈ R

n,
and

(ii) if ε �= 0, (∇H(ξ))T · F (ξ, 0) �= 0 for some ξ ∈ R
n.

If (∇H(ξ))T · F (ξ, ε) is sign-definite, then the invariant sets of the system can be
characterized by looking at the critical sets of the function H. A more exciting situation is if
(∇H(ξ))T ·F (ξ, ε) is not sign-definite. Then there exists ξ such that (∇H(ξ))T ·F (ξ, ε) = 0.
Let us define

C = {ξ ∈ R
n| (∇H(ξ))T · F (ξ, ε) = 0}, (3.2)

and we assume that, for all ξ in C
Dξ (∇H(ξ)) · F (ξ, ε) + DξF (ξ, ε) · ∇H(ξ) �= 0. (3.3)
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By this we have that C is an (n− 1)-dimensional (or a codimension-one) manifold in R
n. This

implies that C separates R
n into the expanding part where (∇H(ξ))T · F (ξ, ε) > 0 and the

contracting part where (∇H(ξ))T · F (ξ, ε) < 0. If an equilibrium exists, it should lie on C.
Let us now look for the conditions for the existence of an equilibrium for the system

(3.1). Let us denote by F ◦(ξ) the vector field F (ξ, 0) and by F 1(ξ) the vector field
∂F
∂ε

(ξ, ε) evaluated at ε = 0. Recall that there exists a real-valued function H defined
in an open neighborhood of ξ◦, such that (∇H(ξ))T F ◦(ξ) = 0. Furthermore, we write
G(ξ) = (∇H(ξ))T F 1(ξ),K = ker(DξF

◦(ξ◦)) and L = ker(DξG(ξ◦)).

Theorem 3.1. We assume that there exists ξ◦ ∈ R
n such that the following conditions hold:

(A1) F ◦(ξ◦) = 0.
(A2) G(ξ◦) = 0.
(A3) K ∩ L = {0}.

Then we have the following conclusions.

(i) There is a Ck-curve in a neighborhood Vξ◦ of ξ◦, i.e. h ∈ R, h �→ ξ(h), such
that F ◦(ξ(h)) = 0,H(ξ(h)) = h, and the tangent space Tξ◦E is equal to K, where
E = {ξ(h) | F ◦(ξ(h)) = 0, h ∈ J ⊂ R}.

(ii) There is a Ck−1-curve (parametrized by ε) γ : I → R
n, where I is an open interval

around 0, and there exists an open neighborhood V of ξ◦ ∈ R
n, such that γ (0) = ξ◦ and,

for every nonzero ε ∈ I,F (γ (ε), ε) = 0.

Remark 3.2. The proof for theorem 3.1 (which is presented in the appendix of this paper)
was suggested by Professor J J Duistermaat from Universiteit Utrecht. The original version
of theorem 3.1 (see [21]) assumes a stronger condition on the critical point ξ◦ which is the
following. Suppose we restrict the flow on a level set of H containing ξ◦. Then as a critical
point of the restricted vector field, ξ◦ is assumed to be hyperbolic. The current version of
theorem 3.1 does not exclude the possibility that ξ◦ is a nonhyperbolic point (for example,
a center point). However, by assuming hyperbolicity, we can also derive the stability of the
equilibrium by using the center manifold theorem. The first conclusion in theorem 3.1 is a
refinement of the discussion in [21]. There we use the topological argument to conclude the
existence of the parametrized family of critical points of the conservative system, following
[8, 10]. However, the topological argument applies only in the case the dimension n is an odd
number.

Remark 3.3. In the case where ξ◦ is a more degenerate critical point, one needs to be a
bit careful with the conclusion. For instance in the case where K ∩ L �= {0}, one needs to
apply some blow-up transformation there to see the complete picture of the dynamics. See for
instance [18].

4. The analysis for the perturbed system

Let us now consider equation (2.1) for ε �= 0. Recall that we have assumed κ1 > 0, κ2 > 0,

ω > 0, while β < 0. The system (2.1) can be written as ξ̇ = F ◦(ξ) + εF 1(ξ) where
ξ = (r, x, y)T ,F ◦(ξ) = (δxr,�(y)y − δr2,−�(y)x)T and F 1(ξ) = (κ1r,−κ2x,−κ2y)T .
For the manifold C we have the cone C = {(r, x, y)|κ1r

2 − κ2(x
2 + y2) = 0}.

In order to apply theorem 3.1 we need to find a point ξ◦ ∈ R
n which satisfies the three

conditions. Geometrically, condition (A1) means that ξ◦ is an equilibrium of the unperturbed
system of (2.1). Condition (A2) means that ξ◦ must lie on C. Thus we need to look for the
intersection point between C and the manifolds of equilibria in (2.2), or between C and the
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manifolds of equilibria in (2.3). Condition (A3) gives us the transversality condition of the
intersection.

In our case, we conclude that if the intersection point exists, then the intersection is always
transversal. The intersection point does not exist in two cases: if δ = 0 or if κ1β − κ2δ = 0.
The location of the nontrivial equilibrium is

ro =
√

κ1κ2(ω2δ2 + ε2(κ1β − κ2δ)2)

δ2(κ1β − κ2δ)2
, xo = −εκ1

δ
, yo = − κ1ω

κ1β − κ2δ
. (4.1)

4.1. Stability analysis for the nontrivial equilibrium

To analyze the stability of the nontrivial equilibrium, we assume that δ is a nonzero parameter
and βκ1 − δκ2 is nonzero. Note that the nontrivial equilibrium depends continuously on ε.
Thus, the matrix of the linearized vector field of (2.1) around the equilibrium also depends
continuously on ε. As a consequence, the eigenvalues of the matrix also depend continuously
on ε. Let us write the formal expansion for the eigenvalue:

λ = λ̃0 + ελ̃1 + ε2λ̃2 + · · · . (4.2)

Substituting (4.2) into the characteristic equation, we compute λ̃k, k = 0, 1, 2, . . . ,

subsequently and then we have three eigenvalues, λ = λ1, λ = λ2 and λ = λ3. The
eigenvalues are, up to O(ε2):

λ1 = ε
2κ1(βκ1 − δκ2)

βκ1 + (2κ1 + κ2)δ
(4.3)

λ2,3 = ±ω
√−κ2δ(βκ1 + (2κ1 + κ2)δ)

βκ1 − δκ2
+

1

2
ε

(
(βκ1 − δκ2)βκ1 − 2κ2δ

2(κ1 + κ2)

δ(βκ1 + (2κ1 + κ2)δ)

)
.

4.1.1. Hopf bifurcation of the equilibrium. Recall that we have assumed β < 0 (following
[23, 24]). Let us now consider the domain on the (δ, β) plane, which is on the right of the line
l, i.e. where βκ1 + (2κ1 + κ2)δ > 0. If δ > 0 then the eigenvalues λ2,3 in (4.3) are complex.

Let us now look at the O(ε) term of λ2,3. These terms are zero if

β =
κ2 +

√
9κ2

2 + 8κ1κ2

2κ1
δ or β =

κ2 −
√

9κ2
2 + 8κ1κ2

2κ1
δ. (4.4)

Lemma 4.1. In the neighborhood of (4.4), the nontrivial equilibrium undergoes Hopf
bifurcation.

Proof. Consider δ > 0. It remains to show that (4.4) occurs in the domain where
βκ1 + (2κ1 + κ2)δ > 0. Note that√

9κ2
2 + 8κ1κ2 =

√
(3κ2 + 4κ1)

2 − 16κ1κ2 − 16κ1
2.

Thus √
9κ2

2 + 8κ1κ2 − κ2

2κ1
<

4κ1 + 2κ2

2κ1
,

which completes the proof. The proof for δ < 0 can be done similarly. �
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Figure 1. In this figure we have plotted the bifurcation sets for the nontrivial equilibrium. The
line represented by a◦ is the line βκ1 − δκ2 = 0. On this line the nontrivial equilibrium goes to
infinity. The lines h1 and h2 are the Hopf lines where the nontrivial equilibrium undergoes the
Hopf bifurcation. The expressions for these Hopf lines are derived by analyzing (4.3). In the
neighborhood of the line l: βκ1 + (2κ1 + κ2) δ = 0, the asymptotic in (4.3) is no longer valid.

Let us denote the line

β =
κ2 +

√
9κ2

2 + 8κ1κ2

2κ1
δ

by h1, and

β =
κ2 −

√
9κ2

2 + 8κ1κ2

2κ1
δ

by h2. These two lines, i.e. h1 and h2, are plotted in figure 1. From lemma 4.1 we know that
on these lines, the nontrivial equilibrium undergoes Hopf bifurcations. The stability result for
the nontrivial equilibrium is presented in figure 1.

4.1.2. The complement of the domain of validity for the asymptotic. There are two
domains where the asymptotic for the eigenvalues (4.3) fails, i.e. the neighborhood of
βκ1 + (2κ1 + κ2)δ = 0 (in figure 1, this is denoted by the line l) and the neighborhood of
δ = 0. Let us now define a new parameter

νεq = βκ1 + (2κ1 + κ2)δ (4.5)

where q is a rational number to be determined. Substituting (4.5) into (4.3) and using the
so-called significant degeneracy which is well known in singular perturbations, we derive that
a suitable value for q is 2

3 . The same technique can be applied to the neighborhood of δ = 0.
We conclude with the following lemma.
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Figure 2. In this figure we have plotted the bifurcation sets which correspond to the nontrivial
equilibrium of (4.1). These sets are obtained numerically. There are five special lines in the
diagram that have been added. The line a◦ corresponds to the situation where the equilibrium goes
to infinity. The line l corresponds to the neighborhood where the asymptotic for the eigenvalues
(4.3) is not valid. The line PD1∞ and the line PD2∞ indicate the locations of the neighborhood
where we expect to find homoclinic solutions. The last special line is the fold line at δ < 0.

Lemma 4.2. The asymptotic (4.3) is not valid on an O(ε
2
3 ) neighborhood of the line l and an

O(ε
2
3 ) neighborhood of the β-axis.

Remark 4.3. The situation in the neighborhood of the line l is rather interesting since this
corresponds to the situation where ξ◦ has three zero eigenvalues. This is a highly degenerate
situation and further study is necessary to describe the complete unfoldings of the point. This
is a topic of our future research. Note that in this paper, as ε �= 0 all the degeneracies are
removed, thus all the eigenvalues of the nontrivial equilibrium have nonzero real parts. Some
preliminary result which is found numerically is presented in the following section.

5. Bifurcation analysis for the perturbed system

In this section, we present the bifurcations analysis for our system. We have used the
Matlab continuation toolbox MATCONT (see [5]). For the numerical data we have used
ω = 3, κ1 = 5, κ2 = 1, ε = 0.05 and β = −6. We start with δ = 12. By decreasing
δ, we perform a one-parameter continuation of the nontrivial equilibrium. As predicted in
the preceding section, we found a Hopf bifurcation at δ = 9.936 110 . . . , at which a stable
periodic solution is created afterward.

Furthermore, we found a second Hopf bifurcation at δ = 0.519 028 . . . . This Hopf
bifurcation produces an unstable periodic solution as we increase δ through the bifurcation
point. Then we perform a two-parameter continuation (using δ and β) of these Hopf points.
The results are plotted in figure 2. The two lines which are named h2 and h4, are the lines

8



J. Phys. A: Math. Theor. 41 (2008) 255101 F Adi-Kusumo et al

Table 1. In this table we have listed the first five values of δ where the period-doubling occurs,
when the period of the periodic solution is larger than 45, for various β.

β = −3 −4 −5 −6 −9

δ 1.025532 1.371639 1.709219 2.057458 3.086188
1.025788 1.366050 1.709640 2.049076 3.073640
1.025730 1.368218 1.709459 2.052326 3.078495
1.025729 1.367376 1.709550 2.051063 3.076595
1.025732 1.367568 1.709547 2.051570 3.077030

where the first and the second Hopf bifurcations occur, respectively. Similarly for δ < 0, we
produce the two Hopf lines, i.e. h1 and h3.

To understand the dynamics of system (2.1), we consider five regions in figure 2:

• Region I: between the line h2 and the δ-axis;
• Region II: between the line h2 and the line h4;
• Region III: between the line h1 and the line h3;
• Region IV: between the line a◦ and the line h1;
• Region V: between the line a◦ and the δ-axis.

We remark that the region between h3 and h4 is excluded from our analysis due to the failure
of the asymptotic (see also lemma (4.2)).

Dynamics in regions I and V are qualitatively similar. The nontrivial equilibrium in these
regions is stable. In region II, we have a saddle-type equilibrium and there are two main
periodic solutions which are created from the Hopf points h2 and h4. These periodic solutions
undergo sequences of period-doubling bifurcations which are accumulated on the lines PD1

∞
and PD2

∞. There are infinitely many periodic solutions produced by the sequences of period-
doubling bifurcations. We discuss the dynamics in regions III and IV in the concluding
remark.

5.1. Sequence of period-doubling bifurcations

Following the stable periodic solution created at h2, we find a sequence of period-doubling
(PD) and fold (F) bifurcations. Let δn be the value where the nth period-doubling bifurcation
occurs. For β = −6, δn goes to 2.0511 . . . , as n goes to infinity. Next we repeat the previously
mentioned continuation program for several values of β. In table 1 we have listed the first
five values of δ at which the period-doubling occurs for various β and the period T is larger
than 45.

Using linear regression, we derive the relation between the above-mentioned accumulation
points (δ) with the parameter β, i.e. δ = β/m1 with m1 = −2.9252+O(10−7). This is the line
labeled as PD1

∞ in figure 2. Using the same technique, we have constructed the line PD2
∞

for the sequence of period-doubling bifurcations of the periodic solution created at h4. The
gradient of this line is −2.5202 + O(10−7).

In figure 3 on the left, we have plotted the period of the main periodic solution for fixed
β = −6 against δ. This curve is named LC1. We have also plotted a similar curve for the
other periodic solution (which is created at the Hopf bifurcation at h4), namely the curve LC2.
This situation is in contrast to figure 7 in [23], where the curves LC1 and LC2 are connected.
The curves LC3 and LC5 are the curves of the period of the periodic solution branching out
through period-doubling bifurcations, against δ. The curves are also accumulated into PD1

∞

9
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Figure 3. The curves LC1 and LC2 on the left plot are the periods of the periodic solutions
created by Hopf bifurcation at h2 and h4 respectively, for β = −6. The LC3 and LC5 curves are
the periods of the periodic solutions branching out from the first period-doubling bifurcations. On
the right is the Poincaré map of the positive attractor projected on the r-axis. On this plot, we have
indicated a few locations by dashed lines at which interesting dynamics is expected.
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Figure 4. On the left plot we have put together the curve of LC1 and some diagrams of periodic
solution for different periods. The right plot shows the ‘distance’ between the periodic solutions
to the equilibrium, against the period.

and PD2
∞. To the right of the previous picture, we have plotted the projection to the r-axis of

the positive attractor in the system against the parameter δ.

5.2. The creation of homoclinic orbits

Following the periodic solution on the LC1 curve, in figure 4 on the left, we show some
diagrams of the periodic solution. From the shape of the periodic solution, there is an
indication that a homoclinic orbit is created, as the period goes to infinity. Another evidence
is by measuring the distance between the periodic solution to the nontrivial equilibrium. Let
ϕT be the T-periodic solution while ξ◦ is the nontrivial equilibrium. The distance is measured
by

d(ϕT ) = min 0�t�T {‖ϕT (t) − ξ◦ ‖}.
10
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Figure 5. The top left picture is the strange attractors on PD1∞ and some periodic solutions which
correspond to the curves of periodic solution LC1, LC2, LC3 and LC5 in figure 3. The top right
picture is the Poincaré section of the strange attractor and the periodic solutions. The bottom
picture is the Lyapunov exponent and the Kaplan–Yorke (K–Y) dimension at some point near and
at PD1∞.

On the right plot in figure 4, we have plotted the function d(ϕT ) as T goes to infinity.
Since the value of d(ϕT ) goes to zero as T goes to infinity, we conclude that the nontrivial
equilibrium collides with the periodic solution. Hence, a homoclinic orbit is created.

5.3. Shil’nikov bifurcation and strange attractor

Following the curve LC1, the main periodic solution undergoes infinitely many period-
doubling bifurcations. We know that each period-doubling bifurcation creates a new periodic
solution with period twice the period of the original one. In general, each of these
periodic solutions might undergo a sequence of period-doubling and fold bifurcations. These
bifurcations lead to the existence of chaotic dynamics in our system and the creation of a
strange attractor.

The strange attractor on the line PD1
∞ has a positive Lyapunov exponent 0.103 55 . . .

and a Kaplan–Yorke (K–Y) dimension 2.110 76 . . . . We plot this attractor on figure 5. The
mechanism that creates this strange attractor is different from that in [24] (which is via
destruction of a torus solution). On the same diagram, we have plotted some periodic solutions
and indicated their periods (T). These periodic solutions are computed using the following

11
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Figure 6. The left picture is the strange attractors on the line l (δ = 2.7273 . . .) for β = −6. The
middle one is the Poincaré section and the right one is the Lyapunov exponent and K–Y dimension.

method. After the nontrivial equilibrium undergoes a Hopf bifurcation, at δ = 9.936 110 . . . ,

we follow the periodic solution which is created using the parameter δ. We follow the periodic
solution until δ = 2.0511 . . . is achieved while the period is high enough.

Along the way, the periodic solution undergoes a period-doubling bifurcation. We also
follow the new periodic solution using δ until it reaches the same value as previously, and the
period is high enough. We repeat this for the two other periodic solutions (which are indicated
as LC3 and LC5 in figure 3).

As is clear from the previous subsection, on the line PD1
∞ for β = −6, we have

a homoclinic orbit. Moreover the nontrivial equilibrium is a saddle-type equilibrium.
The linearized system near this equilibrium has eigenvalues �1 = −1.132 and �2,3 =
0.151 ± 0.499i. The above situation satisfies the conditions for Shil’nikov bifurcation. It
implies that the system has infinitely many periodic solutions near the value of δ, see [11] for
details. Note that the Shil’nikov conditions are also satisfied at PD2

∞.
The shape of the strange attractor is closely related to the distribution of the periodic

solutions. We plot them in figure 5. The stars and the squares form the periodic solutions
which have periods 11.2148 and 19.5182. These are the main periodic solutions which lie on
the LC1. The diamonds and the triangles denote the periodic solutions on the branch LC3 and
LC5 curve in figure 3. Their periods are 15.8509 and 28.5360. We also plot the homoclinic
orbit which indicates the Shl’nikov bifurcation in this figure. In figures 6 and 7 we plot two
other strange attractors of our system.

The strange attractor which is shown in figure 6 has a Lyapunov exponent 0.107 097 . . .

and K–Y dimension 2.14 146 . . . . Furthermore, the attractor at δ = 2.3808 . . . which is shown
in figure 7 has a Lyapunov exponent 0.0148 . . . with the K–Y dimension 2.019 87 . . . . From
the Lyapunov exponent and K–Y dimension we see that the strange attractor on the line l is
more chaotic than the other two attractors. In figure 7, we see that the attractor has Lyapunov
exponent O(ε) but the K–Y dimension is ≈2. The bifurcation type in this case is not clear at
this moment and we leave it for further study.

6. Concluding remarks

An analysis for the dynamics of a singularly perturbed conservative system arising from a
system of coupled oscillators at 1 : ε resonance is provided in this paper. As in the previously

12



J. Phys. A: Math. Theor. 41 (2008) 255101 F Adi-Kusumo et al

0

0.5

0

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

xy

r

T =  18.5159

T =  30.1750

Homoclinic Orbit

The Attractor 

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

y

r

T=18.5159

T=30.1750

T → ∞

Figure 7. The left picture is the attractor and the homoclinic orbit on the line PD2∞ for β = −6.
The middle one is the Poincaré section, and the right one is the Lyapunov exponent and Kaplan–
Yorke (K–Y) dimension for some value of δ near δ = 2.3808.

mentioned study, we encounter chaotic dynamics in our system. The mechanism for the
creation of chaos in our paper is the sequence of period-doubling bifurcations.

For negative δ, the nontrivial equilibrium is asymptotically stable in region V of figure 2.
In other regions, the equilibrium is unstable and most of the solutions are unbounded. Another
point to mention is an unstable periodic solution which is created through the Hopf bifurcation
on the line h1. By continuing this periodic solution following the parameter δ, we found a Fold
bifurcation at which the periodic solution becomes a saddle type. Using the two-parameter
continuation we can compute the fold line, which has a gradient 0.7903 + O(10−10) (see
figure 2). It is interesting to note that by following this saddle-type periodic solution with δ,
the periodic solution becomes large while the period becomes small. Further investigation is
necessary to clarify this.

For β = 2δ, which is the case of 2:1 resonance which is explained in appendix B, the
dynamics of the normal form (B.3) depends only on the ratio of κ1 and κ2. For β < 0 the
stability of the equilibrium is shown at δ < 0 in figure 2. To have an asymptotically stable
equilibrium, we should choose κ2/κ1 > 2. Using our numerical data that we have chosen,
the case β = 2δ is located in region III of figure 2. From this result, we conjecture that the
exciting dynamics in [23, 24] are there due to the frequencies of the system.

6.1. Application to the atmospheric dynamics

Most of the exciting dynamics observed in [23, 24] are presented here. This suggests that the
dynamics which is observed there and also here is a generic phenomenon in our system. A
similar dynamics is also observed in the study in [4]. This suggests that our low-dimensional
system serves as a good model for the dynamics in [4]. Each oscillator in our system represents
a particular dominant flow pattern in atmosphere. These flow patterns are characterized by
their frequencies. The parameter in our system namely δ represents the interaction between
these flow patterns. The slow–fast dynamics represent the interaction between the flow patterns
which have different time scale.
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Appendix A. The proof of theorem 3.1

Let us first present two lemmas which will be used for the existence of an equilibrium for
system (3.1).

Lemma A.1 [Taylor formula without remainder]. For any Ck-function f (ξ, ε) there is a
Ck−1-function q(ξ, ε), such that f (ξ, ε) − f (ξ, 0) = εq(ξ, ε) and q(ξ, 0) = ∂

∂ε
f (ξ, ε) at

ε = 0.

Proof. Since

f (ξ, ε) − f (ξ, 0) =
∫ 1

0

d

dt
(f (ξ, tε)) dt = ε

∫ 1

0

∂f (ξ, η)

∂η

∣∣∣∣
η=tε

dt,

we can write q(ξ, ε) = ∫ 1
0

∂f (ξ,η)

∂η

∣∣∣
η=tε

dt . The smoothness of q decreases since the definition

involves differentiation. �

Lemma A.2. Let U be an open subset of R
n+1 which consists of points which will be denoted

by (ξ, ε), (0, 0) ∈ U,f : U → R
n is a Ck-mapping. Let

K = ker(Dξf(0, 0)) and L = ker

(
∇

(
∂

∂ε
fn(ξ, ε)

)∣∣∣∣
(0,0)

)
.

We assume that the following holds.

(A1) fn(ξ, 0) = 0.
(A2) f(0, 0) = 0.
(A3) K ∩ L = {0}.

Then we have the following conclusions.

(i) dim K = 1, dim L = n − 1, and K and L are complementary linear subspaces of R
n.

(ii) In a neighborhood of the origin in R
n, the set of ξ such that f(ξ, 0) = 0 is a Ck-curve in

R
n through the origin with the tangent space at the origin equal to K.

(iii) There is a Ck−1-curve γ : I → R
n, where I is an open interval around 0, and there exists

an open neighborhood V of 0 in R
n such that γ (0) = 0 and, for every nonzero ε ∈ I, γ (ε)

is the unique solution ξ ∈ V of the equation f(ξ, ε) = 0.

Proof.

(1) From (A1), we have that Dξf(0, 0) has a rank at most n−1, which implies that dim K � 1.
Note that

∇
(

∂

∂ε
fn(ξ, ε)

)∣∣∣∣
(0,0)

,

which is a vector in R
n, can be seen as a linear form. Because L is the kernel of a linear

form, dim L � n − 1. From (A3) we know that dim K + dim L � n. If dim K > 1
then dim L < n − 1, which is a contradiction. Thus dim K = 1 and dim L = n − 1.
Furthermore, K and L are complementary linear subspaces of R

n.
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(2) Let fn−1(ξ, ε) denote the first n − 1 components of f . Because of (A1), the equation
f(ξ, 0) = 0 is equivalent to fn−1(ξ, 0) = 0 (meaning the zero sets of both equations are
the same). Moreover,

ker(Dξfn−1(0, 0)) = ker

(
Dξfn−1(0, 0)

0 . . . 0

)
= ker(Dξf(0, 0)) = K.

From (1) we know that dim K = 1. This means that Dξf(0, 0) is surjective. By applying
the implicit function theorem we have the result in statement (2).

(3) From the division lemma, there exists a Ck−1-function Qn(ξ, ε) such that Qn(ξ, 0) = ∂fn

∂ε

at ε = 0 and fn(ξ, ε) = εQn(ξ, ε). Note that to conclude the latter we have used (A1),
i.e. fn(ξ, 0) = 0. This implies that L is equal to the kernel DξQn(0, 0). Let us now write

Q(ξ, ε) =
(

fn−1(ξ, ε)

Qn(ξ, ε)

)
.

For ε �= 0 the equation f(ξ, ε) = 0 is equivalent to the equation Q(ξ, ε) = 0. This is clear
because, for Qn(ξ, ε) = 0 is equivalent to fn(ξ, ε) = εQn(ξ, ε) = 0, if ε �= 0. The
kernel of DξQ(0, 0) is equal to the common kernel of Dξfn−1(0, 0) and DξQn(0, 0), i.e.
K ∩ L = {0}. Thus DξQ(0, 0) is invertible and the result in statement (3) follows from
the implicit function theorem. �

Proof of the theorem:

Proof. The proof of this theorem follows from lemma A.2, by considering a coordinate
transformation

T : ξj �→ ζj = ξj + ξ◦j

ξn �→ ζn = H(ξ) − H(ξ◦).

The origin of the new coordinate system corresponds to ξ◦. In this new coordinate
we have a system of ordinary differential equations ζ̇ = F̃ (ζ, ε) where F̃n(ζ, ε) =
(∇H(ξ(ζ)))T F (ξ(ζ), ε). Clearly F̃n(ζ, 0) = 0, for all ζ since H is an integral of
F ◦(ξ) = F (ξ, 0). The theorem then follows from (A.2). �

Appendix B. The 2:1 resonance case of the system in [23]

In this section, we will show that the normal form of the system in [23] at 2:1 resonance is
contained in the system (2.1).

Recall the system in [23]:

ξ̇ =
(

D1 0
0 D2

)
ξ + ε̃F (ξ), 0 < ε̃ � 1, (B.1)

with ξ ∈ R
4 and F : R

4 → R
4. The function F is assumed to be a quadratic, homogeneous

polynomial in ξ satisfying ξ · F (ξ) = 0. We assume that Dj, j = 1, 2, are 2 × 2 matrices
with eigenvalues ε̃µ1 ± i and ε̃µ2 ± i(2 + ω), respectively. Here µ1 and µ2 are O(1) while ω

is O(ε̃), known as the detuning parameter. The system (B.1) can then be viewed as a system
of coupled oscillators near 2 : 1 resonance, with dissipation. To apply the averaging method,
we transform

ξ1 �→ r1 cos(t + ϕ1), ξ2 �→ −r1 sin(t + ϕ1),

ξ3 �→ r2 cos(2t + ϕ2), ξ4 �→ −r2 sin(2t + ϕ2)
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and then average the resulting equations of motion with respect to t over 2π . According to the
averaging theorem (see Sanders and Verhulst [17]), the solution of the averaged equations and
the original equations for the same initial condition stay in the O(ε)-neighborhood of each
other for O(1/ε) time scale. One should of course carefully check the boundedness condition
in the theorem. In our case they are satisfied.

Thus, the averaged system:

ṙ1 = ε̃ (µ1r1 + r1r2(δ1 sin(2ϕ1 − ϕ2) + δ2 cos(2ϕ1 − ϕ2)))

ṙ2 = ε̃
(
µ2r2 + r2

1 (−δ1 sin(2ϕ1 − ϕ2) − δ2 cos(2ϕ1 − ϕ2))
)

(B.2)

ϕ̇1 = ε̃r2 (−δ2 sin(2ϕ1 − ϕ2) + δ1 cos(2ϕ1 − ϕ2))

ϕ̇2 = ε̃

(
ω +

−δ2r
2
1 sin(2ϕ1 − ϕ2) + δ1r

2
1 cos(2ϕ1 − ϕ2)

r2

)
serves as an O(ε) approximation for the original system on a time scale of 1/ε. The parameters
δ1 and δ2 are dependent on the coefficients of F .

Further simplification of (B.2) can be done by defining ϕ = 2ϕ1 − ϕ2 which reduces the
dimension by 1. This is typical for autonomous system after averaging. The reduced averaged
equations are

ṙ1 = ε (µ1r1 + r1r2(δ1 sin(ϕ) + δ2 cos(ϕ)))

ṙ2 = ε
(
µ2r2 + r2

1 (−δ1 sin(ϕ) − δ2 cos(ϕ))
)

ϕ̇ = ε

((
−2δ2r2 +

δ2r
2
1

r2

)
sin(ϕ) +

(
2δ1r2 − δ1r

2
1

r2

)
cos(ϕ) − ω

)
.

Let us transform the system into Cartesian coordinate by defining r = r1, u = r2 cos ϕ

and v = r2 sin ϕ. The transformed system is

ṙ = ε(µ1r + (δ1v + δ2u)r)

u̇ = ε(µ2u + 2(δ2v − δ1u)v − δ2r
2 + ωv)

v̇ = ε(µ2v − 2(δ2v − δ1u)u − δ1r
2 − ωu).

Lastly, we define a transformation: (r, u, v) �−→ (r, x, y) with x = (δ1v + δ2u)/δ, y =
(δ2v − δ1u)/δ, which is a rotation with respect to the r-axis. By doing this, the normal form
can be written as (after re-scaling time t �→ εt)⎛

⎝ṙ

ẋ

ẏ

⎞
⎠ =

⎛
⎝µ1 0 0

0 µ2 0
0 0 µ2

⎞
⎠

⎛
⎝r

x

y

⎞
⎠ +

⎛
⎝ δxr

�y − δr2

−�x

⎞
⎠ . (B.3)

with � = 2δy + ω. One can see that by setting µ1 = εκ1 and µ2 = −εκ2 for κ1, κ2 > 0, we
arrive at the system (2.1) for β = 2δ.

References

[1] Arnol’d V I 1978 Mathematical Methods of Classical Mechanics (New York: Springer)
[2] Broer H W, Chow S N, Kim Y and Vegter G 1993 A normally elliptic Hamiltonian bifurcation Z. Angew. Math.

Phys. 44 389–432
[3] Broer H W, Chow S N, Kim Y and Vegter G 1995 The Hamiltonian double-zero eigenvalue Field Inst. Commun.

4 1–19
[4] Crommelin D T 2002 Homoclinic dynamics: a scenario for atmospheric ultralow-frequency variability J. Atmos.

Sci. 59 1533–49
[5] Dhooge A, Govaerts W and Kuznetsov Y A 2003 MATCONT: a MATLAB package for numerical bifurcation

analysis of ODEs ACM Trans. Math. Softw. 29 141–64

16

http://dx.doi.org/10.1007/BF00953660
http://dx.doi.org/10.1175/1520-0469(2002)059<1533:HDASFA>2.0.CO;2
http://dx.doi.org/10.1145/779359.779362


J. Phys. A: Math. Theor. 41 (2008) 255101 F Adi-Kusumo et al

[6] Fatimah S and Ruijgrok M 2002 Bifurcation in autoparametric system in 1:1 internal resonance with parametric
excitation Int. J. Non-Linear Mech. 37 297–308

[7] Fenichel N 1979 Geometric singular perturbation theory for ordinary differential equations J. Differ. Equ.
31 53–98

[8] Guillemin V and Pollack A 1974 Differential Topology (Englewood Cliffs, NJ: Prentice-Hall)
[9] Haller G 1999 Chaos Near Resonance (Applied Mathematical Sciences vol 138) (New York: Springer)

[10] Hirsch M W 1994 Differential Topology (Graduate Texts in Mathematics vol 33) (New York: Springer)
(Corrected reprint of the 1976 original)

[11] Kuznetsov Y A 1998 Elements of Applied Bifurcation Theory (Applied Mathematical Sciences vol 112) 2nd edn
(New York: Springer)

[12] Langford W F and Zhan K 1999 Interaction of Andronov-Hopf and Bogdanov-Tekens Bifurcation Field Inst.
Commun. 24 365–83

[13] Langford W F and Zhan K 1999 Hopf Bifurcation Near 0:1 Resonance Proc. BTNA’98 eds Chen, Chow and Li
(New York: Springer) pp 1–18

[14] Nayfeh S A and Nayfeh A H 1993 Nonlinear interaction between two widely spaced modes-external excitation
Int. J. Bifurcat. Chaos 3 417–27

[15] Nayfeh A H and Malatkar P 2003 On the transfer of energy between widely spaced modes in structures Nonlinear
Dyn. 31 225–42

[16] Sanders J A 1978 Are higher order resonances really interesting? Celestial Mech. 16 421–40
[17] Sanders J A and Verhulst F 1985 Averaging Methods in Nonlinear Dynamical System (Appl. Math. Sciences

vol 59) (New York: Springer)
[18] Stiefenhofer M 1998 Singular perturbation with limit points in the fast dynamics Z. Angew. Math. Phys.

49 730–58
[19] Tondl A, Ruijgrok M, Verhulst F and Nabergoj R 2000 Autoparametric Resonance in Mechanical Systems (New

York: Cambridge University Press)
[20] Tuwankotta J M and Verhulst F 2000 Symmetry and resonance in Hamiltonian systems SIAM J. Appl. Math. 61

1369–85
[21] Tuwankotta J M 2002 Heteroclinic behaviour in a singularly perturbed conservative system Higher-

Order Resonances in Dynamical Systems PhD Thesesat Utrecht University, http://www.library.uu.nl/
digiarchief/dip/diss/2003-0114-104617/inhoud.htm

[22] Tuwankotta J M and Verhulst F 2003 Hamiltonian system with widely separated frequencies
Nonlinearity 16 689–706

[23] Tuwankotta J M 2003 Widely separated frequencies in coupled oscillators with energy-preserving quadratic
nonlinearity Physica D 182 125–49

[24] Tuwankotta J M 2006 Chaos in coupled ocsillators with widely separated frequencies and energy-preserving
nonlinearity Int. J. Nonlinear Mech. 41 180–91

17

http://dx.doi.org/10.1016/S0020-7462(00)00115-3
http://dx.doi.org/10.1016/0022-0396(79)90152-9
http://dx.doi.org/10.1142/S0218127493000301
http://dx.doi.org/10.1023/A:1022072808880
http://dx.doi.org/10.1007/BF01229286
http://dx.doi.org/10.1007/s000330050118
http://www.library.uu.nl/digiarchief/dip/diss/2003-0114-104617/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/2003-0114-104617/inhoud.htm
http://dx.doi.org/10.1088/0951-7715/16/2/319
http://dx.doi.org/10.1016/S0167-2789(03)00123-4
http://dx.doi.org/10.1016/j.ijnonlinmec.2005.02.007

	1. Introduction
	1.1. Summary of the result

	2. Formulation of the system
	2.1. Notes for the

	3. On singularly perturbed conservative systems
	3.1. Some notations

	4. The analysis for the perturbed system
	4.1. Stability analysis for the nontrivial equilibrium

	5. Bifurcation analysis for the perturbed system
	5.1. Sequence of period-doubling bifurcations
	5.2. The creation of homoclinic orbits
	5.3. Shil'nikov bifurcation and strange attractor

	6. Concluding remarks
	6.1. Application to the atmospheric dynamics

	Acknowledgments
	Appendix A. The proof of
	Appendix B. resonance case
	References

